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& ABSTRACT: A research configuration was formed by attaching wrap-
E i around fins in a cruciform arrangement to a l0-caliker Army-~Navy

Spinner Projectile. This configuration was tested in the Naval
Ordnance Laboratory's Supersonic¢ Tunnel No. 2 to get the Magnus
force and moment, as well as the normal force and pitching moment. ]
Model spin rate was generated by means of fin cant. 13
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INTRODUCTION

The wrap~around-£in stabilizer has become increasingly attractive
to designers of unguided aeroiraliistic ordnance. The reason is, of
course, that the wrap-arcund-£fin concept nearly obviates the space
requirerents of the more conventicnal rigid planar stabhilizers. By
causing the stabilizer to conform to the circular contour of a weapon,
it is pussible Lo minimize space requirements and to increase weapon
packing density. The wrap-sround stabilizer also wmakes it feasible
to launch a fin-~gtabilized weapon from a tube whose inside diameter
is only slightly greater than the weapon's maximum body diameter.

The tube may be anything from a disposablc storage container to a
rifled gun barrel, 40 or meore body diameters in length.

7o gain the above mentioned advantages, the wrap-around fin also
prescents the weapons designer with certeir problems not encountered
Dy the rigid plansr £in. For purposes of discussion, these problens
may be separated into two distinct areas - mechanical and aerodynamic,
The mcchanical conplications center around providing a hinge at the
body-£fin junction for fin rotation during deployment. Once deployument
is completed, the hinge must become rigid to prevent further rotation
of the curved fin panel relative to the body. HWrap-around-fin
configurations in operation on weapons prove that a successful deploy-
ment mechanism is feasible,

The aerodynamic effecte introduced by the cuirved surface <f the
wrap-around stabilizer are more difficult to define than are the
mechanicel complications. The main obstacle appears to be a lack of
understanding of the effect of stabllizer g¢urvature on pressure
distribution, especially for a fairly general c¢lass of fin geometries.
One example of the complications introduced by the wrap-around-fin
curvature is the rolling moment generated by a nominally uncanted fin,
In the course of an early wind-tunnel investigation of this phencmenon
it was discovered that this rolling moment reversed sign with Mach
number {(see Ref, (i)). This spurious rolling moment was found to be
in the opposite direction for subsonic flows. ¢Of course the weapon de-
signer bezomes quite interecited in how the Mach number, at which the
fin-curvature~induced rolling moment changes sign, might ke controlled.
In Rcference (1), and unpublished anvestigations, it was found
that the Mach number of rolling-moment sign reversal is strongly
dependent upon fin geometry. For example, in one investigation a
rectangular £in encountered a rolling-noment sign reversal at about
& Mach number of 1.0, If the leading edge of the fins was swept
(4% degrees in this investigation), the rolling moment would not
reverse until a Mach number of 1.75 had been reached.

Attempts were made to compare the wind-tunnel measurements of
norial force and pitching moment with theoretical estimatecs,
Although the estimates are based upon flat fins (of the same chord
and span as the wrap-around fin), the good agreement obtained
indicates that fin curvature has little influence on the normal-force
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and pitching-moment coefficients, Since no suitable theory exists
for estimating the Magnus nionent on finned bodies, Magnus data must
be presented without theoretical corroboration,

SYHBOLS
C:p center of pressure
Cy rolling-moment coefficient, M. /Q8d
Cg goli-damping derivative, 8CK/8(pd/2V®)
g ‘ ’
. . _ ‘ oC,
Cﬁé roliing-moment derivative due to fin cant, 53:
o pitching-nonment coefficient, MY/QSd
<, yewing-moment coefficlient, M, /Q5d
Cn Magnus~-moment coefficient, acn/a(pd/sz}
Cy normal-force coefficient, -Fz/Qs
CY . gide~force coefficient, Fy/Qs
G Magnus-force coefficient, acy/a(pd/sz)
. 4
d reference length, body diameter
F& - eomponent ¢f aerodynamic force along y axis
F: component of aerodynamic force along z axis
& Mach number
Nx roliing moment, moment about x axis
My pitehing moment, moment about y axis
“z yawiny moment, moment about, z axis !
o epin yate
P reducec spin rate, pd/2v
Po stagnation pressure
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gynamic pressure, l/vai

reference area, ﬂd2/4

8<

free-stream airspeed

- SR BSR4 R )
LI o

X body axis through center of gravity to vertex along
longitudinal &axis of symmetry

Y body axis orthogonal to x axis and normal to angle-of-
attack plane

2 body axis orthoygonal to x and y axes
angle of attack

P density of free stream

e R T RO
[ =]

fin-cant angle

DESCRIPTION OF CONFIGURATION

G kL AT LR

v

The primary purpose of this investigation was to obtain Magnus
and static loads oa a configuration with a wrap-around-fin stabili-
zer. Since the shape ¢of the body to which these fins are attached
will influence the measured loads, a shape without contour irregu-
larities was chosen to minimize forebody contributions. It was
decided that the Army-Navy Spinner Projectile would be used as the
basic body for the following reasons: first, the Army-Navy Spinner
Projectile is relativel, free from configuratvioial irregularities;
secondly, supersonic static and Maghus measurements were made earlier
on this configuration at the Maval Ordnance Laboratory (NOL). These
data are available in Reference (2). The availability of body-alone
data is important if one wishes to make use of the analytic metbods
¢ of References (3) and (4).

Mot PHTHPAEY, BT ¢ g -
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i Figure ] shows the wrap-around-fin model used in these tests.

As nentioned above, the body is a l0-caliber-long version of the Army-
Navy Spinner Projectile. This configuration has a twe-caliber-long
secant ogival neose of radius 8.5 body calibers.

[P

.

Stabilizer details are illustrated in Figure 2. The upper left-
. hand photograph presents an axial view of a typical wrap-around
fin. It is clearly evident that the fin curvature closely matches
that of the body contour. Since spin was provided by means of fin
. cant, three sets of fins were constructed with fin-cant angles of 2.00,
3.25 and 4.50 degrees, respectively. These are illustrated in the
remaining photographs of Figure 2. For all sets of fins, fin chord
is 1.75 calibers; the thickness is ceonstant (0.0é6 calibers), and
each fin has a 45-degree bevel at both the leading and trailing edges.

e
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TEST TECHNIQUE

The waind-tunnel tests described in this reoport were car ed out
in the NOL Supersonic Tunnel No. 2: ar open-jet, fixed nozzle oslock
facility with & 16- by lé-inch test section. Even though thi. tunnel
can be operated in an intermittant fashion, it is intended to be
used mainly as a continuous lecirculating facility. For a rough
description of the ouperational capabilities of this wind tunnel the
following range of variables migbht be listec¢: Mach numberc range
Letween 1.2 and 5.0; Reynolds nunber between 0.9 and 12 million per
foot: total pressure between 0.5 and 15 atmospheres, and total
tenperature from ambient to 600° Rankine. The above variables are
intesrelated, which means that some of the extremes are not possible
under certain conditions. Of primary interest to the aerodynamicist
1s the Reynolds number-Mach number operaticnesl profile. This profile
is given in Figure 3.

Rll data presented in this report were made at a total pressure
of one atmosphere, as indicated in Figuce 3. Measu-ements were made
at Mach numbers of 1.76, 2.0, 2.5, 3.0 and 3.5.

The most important single instrument used in making successful
Magnus measurements is the Magnus wind-tunnel balance. The belance
ased 1n making the 1eported measurements is descrided in detail in
Reference (5). While the details of balance construction will not be
included here, it might be of value to consider the nature of the
lagnus effect and how the size and direction of the Magnus force
influence balance design.

The Magnus force acts normal to the angle~-of-attack plane, which
is the plane defined by the free~gtream velocity vector and the body's
longitudinal axis. The Magnus force, thcrefore, must be measured in
the presence of an orthogonal force (normal force) which is at least
ten times greater in magnitude. In addition, the Magnus measurements
must be made on a body which is spinning. The model is, therefore,
nmounted on essentially a four-component static balance with the
added complications of providing and measuring spin.

todel spin can be provided in a variety of ways; however, the
most common procedures are to use an internal motor (electrical or
pneumatic) or +to cant the model's fins. ¥For the present tests of
the wrap-arcund-fin configuration, spin is provided by differential
fin cant, and is varied by using different cant angles.

The wind~-tunnel technigue used in making these Magnus measurements
will be outlined now. After tunnel flow has been established, the
model is swept through the angle-of-attack range. The sweep rate is
slow enocugh to assure that the model is at all times spinning at the
steady-state spin rate ccorresponding to the instantaneous angle of
attack. Checks were made of this spin rate-angle of attack assumption
by measuring spin rates and loads at discrete angles of attack. As
the model is being swept through the prescribed angle-of-attack range,

4
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the strain gages are sampled 80 times per second. The result is a

nearly continous record of the four coefficients, Cm' CN' Cn and Cy’

with angle of attack.
DATA REDUCTION

The sampled strain-gage signals are rccorded in digital form on
magnetic tape. This tape, together wiih an additional tape record of
the balance caliosralion, is inpul into a digital cowmputer data-
reduction proyraim. The output froum thils program is a ploiting taepe
and a printed record of coefficients and pertinent test anformation.
In these Magnus tests this information consisis of spin rate, reduced
epin rate, Mach number, total pressure and total temperature. The
plotting tape is then used as an input into ar automatic plotter to
provide the yraphical data records which makc up this report.

DISCUSS10ON OF RLSULTS

The normal-force and pitching-moment coefficients are presented
in Figures 4 through 31. 9Yhe noimal force is defined ar that compo-
nent of the total aerodynamic force which acts normal to the body's
axis of symmetry and lies in the plane defined by the axis of sym-
meiLry and the frec-stream velocity vector (aagle-of-attack plane).
The pitching moment is the component of the total aerodynamic moment
normal to the angle-of-attack plane.

A guick perusal of these static measurementis reveals two rather
inte:esting results. First, the normal-force and pitching-moment
coefficients are linear up to six-degrees angle of attack and only
deviate significantly from linearity after l0-degrees angle of attack.
To within the range of angle-of-attack measurements shown here, the
pitching-moment coefficient slope shows & tendency tu increase in
magnitude with angle of attagk above 10 degrees. This trend is
consistent with measurements made on flat fins (see, for example,

Ref. (6)). Secondly, the pitching-moment and normal-force co-
efficients indicate no dependency on spin rate. &As would be expected,
the largest fin cant of 4.50 degreces gives a spin rate at least twice
that of the lowest fin cant of 2.00 degrees., This spin-rate
wariation is not detectable in the normal-force and pitching-moment
coefficients.

As mentioned ea-lier, no adequate theory exists for calculating
the effect of fin curvature on the normal-force and pitching-moment
data. Nevertheless, in obtaining an estimate of these effects, the
©bvious simplification is to ignore fin curvature and to "replace"
the curved fin by a rectangular fin of the same chord and span. When
this is done, the aerodynamicist has at his disposal the low-aspect
ratio theories of Pitts, Nielsen and Kaattari, ac presented in
Reference (3). This analysis has been put in & form more amenable
have been included (see Ref. (4)). Dedong's analysis requires a
knowledge of body-alone normal-force and pitching-mement

< e e et —— UL AT A R AR L L e b s
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character.zcics., Fortunately, this information is available since
body-alone measurements had been made earlier on the l0-caliber Army-
Navy Spinner Projectile (see Ref, (2)).

Calculations were made of the normal-force and pitching-moment
derivatives using DeJong's methods. In the table below comparisons
are made between the theoretical and measured values of these
derivatives:

Theoretical - Measured
Mach No. CNOL Cma CNa Cma
0.192 -1.33 0.132 -1.12
0.171 -1.045 0.168 -¢.970
3.0 0.137 -0.878 0.156 -0.880

The above theoretical estimates are sketched on Figures 4
through 31, where appropriat2. Pitching-moment coefficient compari-
sons are shown on Figures 8, 11 and 14 and those fov the normal force
on Figures 22, 2% and 28.

It will be noted in the graphical and tabular comparisons that
agreement between theory and measurement is8 gquite satisfactory. Some
disagreement should be expected since the theoretical calculations
are based upon zero roll angle (two opposing fins normal to the
angle-of-attack plane; the other two opposing fins are located in the
angle-of~attack plane). The measurements, on the other hand, were
made on spinning models where spinning will "average out” the
variations in static loads which are a consequence of roll angle.

In the case of Magnus measurements, no theoretical estimates of
any value exist. For this reason, Magnus data will be presented
without attempts at theoretical corroboration.

It was mentioned earlier that the model sweep rate in dngle of
attack was sufficiently slow that the measured values of spln rate
were essentlallv anadv—state valuas, This ';tCQu_y state "’P'L“ is
assumed to be defined by the follow1ng relat onship

Pss =& " ()

where Cy is the rolling-moment coefficient due to fin cant, and CR

26 and C o
functions of angle of attack (for fixed Mach number and Reynolds
number) , the steady-state spin, p__, may be thought of as a unigue

is the damping-in-roll derivative. Since C , are solely

sS

function of angle of attack.
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Figures 32 through 36 present the reduced spin rate versus angle
of attack. It will be noted that in all casec the reduced spih rate
ig nearly a constant for angles of attack up to three degrees; above
this angle, however, there ic a rather sudden increase in the spin

R Sr Ly

rate. Variation of s}in rate with fin cant is indicated in Figure 37.

Magnus measurements are presented in Figures 38 through 51 in
terms of the yaw-moment coefficient versus angle of attack; and,
in Figures 52 through 65 in terms of the side-force coefficient
versus angle of attack. In analytically describing the Magnus moment,
the following functional relationship will be assumed:

€, = f (P, @, M, Re) ' (2)
where P, a, M and Re are the reduced frequency, angle of attack, Mach
number and Reynolds number, respectively. A similar relationship
presumably could be written for the side-force coefficient. The
reason for the inclusion of, and restriction to, these variables is
based upon various experiments conducted over the past 100 years, &s
well as conjecture into the essential fluid mechanics of the Magnus
phenomenon (see Ref. (7)). Classically, the Magnus force is the
component of the total aerodynamic lo~d acting on a spinning body which
acts normal to the angle-of-attack plane (defined earlier). Of course,
this force results in a moment (moment vector lying in the angle-of-
attack plane) about some suitable reference point.

Supposedly, there should be no load normal to the angle-of-attack
plane on a body which is symmetric with respect to this plane. On a
finned body there is a “roll-induced” force and moment which varies
cyclically with roll angle. As the body roll violates the symmetry,
with respect to the angle-of-attack plane, one should expect a load
normal to this plane. Nevertheless, this induced load is not
associated with the Magnus effect, since induced effects depend upon
rcll angle and Magnus effects on roll rate.

The use of the reduced spin rate (rather than the spin rate
alone) may be supported by the simplified flow model illustrated below:

-
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The area element RABAX "sees™ a local fluid velocity which has a spin
component of magnitude pR and a longltudinal component of V_cCosa.
A measure of the relative magn 1t ide of these two components is the

angle, 1, whose tangent way be written and then approximated as,
PR - PR . pd .
tan 1 = V Cosa ~ V EV: (3)

where the local body radius, R, has been replaced by the reference

length, 4, (maximum kody diameter}) and the small angle assumption has

been made on the angle of attack, a. Since pd/2 << V_, a further ¢
small angle assumptlon can be made in Equation (3) by equating 1t to

pd/2v_ which gives a sort of physical identity to the reduced spin

rate, p = pd/2v_.

The sign of the f«rebody Magnus force might be anticipated on
the basis of the following oversimplified fluid dynamics argument.
This arc ment is adequate only because the Magnus effect is being
looked ... qualitatively ~ merely to indicate force direction.

Consider the element RABAX, designated by (1), and the corre-~
sponding diametrically opposite element, desxgﬁated by (2):

Vs
y
1z -
N
Ljﬁ.unu
'hete 1/2
Ve = V.sip a (2 + 2 cos 26)/ (4) % :
Assuming two~dimensional flow about & cylinder, it can be seen that ¥

the spin and crossflow velocities, pR, and Vf, respectively, add at
element (1) and subtract at element {(2}. From Berpoulli's eguation

*

See any text on elementary incompressible fluid mechanics, e. ger
page 388, Karamchetti, "Principles of Ideal-Fluid Aerodynamics,”
John Wiley and Sons, 1966
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it can be shown that the PreEssure 18 greater at elewent {2 than at
element (1). The resulting pressuire difference produces a net force
in the negative direction of the y axis. Integrated around the
volume element, this force per unit length, dFy/dx, should be

-2ndpV:sina= aF, /dx {5)

wiin cthe negative sign iauicating a force directiou along the negative
y axis. Tuus, Equations (3) and (5) indicate that the reduced spin
rate, p, and angle of attack, a, are neccssary independent variables

Of course, Equation (5), being based upon inviscid incompressible flow,
is not satisfactory for load estimates.

Aerodynamic coefficients are used to describe loads and, since
coefficients are loads normalized by the dynamic pressure, it wouid
be expected that the coefficients will be tuncglonz of fiow s;m;larlty
parameters (Mach number, Reynolds number) only .

Since the functional form of Equation (1) is not known, an attempt
might be made tc expand it in a Taylor series for the reduced spin
rate, p. The first term of such a series might be written as,

oC
c. = —2p P (6)
n " 55 -

where acr/aﬁ is a function of the angle of attack, Mach number and

Reynolds number. While Equation (5) is adequate for nonfinned bodies,
the presence of fins causes the Magnus effect to vary nonlinearly
with p.

If one wishes to persist in a Taylor expansion of Eqguation (1),
by retaining more terms, it must be emphasized that to do =0 requires
that only one variable be changed, at a time, in any experiment to
nmeasure the additional terms. In conducting this test, however, loads
were measured while continually rotating the muGel through angle of
attack. However, while the angle of attack is changing, the spin rate
is also changing (see Figs. 32 through 36). Of course, cross plots
can be made to show variations in the coefficients with a single
variable. However, it will he pointed out now that this is neither
necessary nor desirable.

Through some simple arguments it has been indicated that the
Magnus effect is a function of reduced 5p1n rate. This reduced spin-
rate parameter can be related to fin-cant angle, 6, through the

- aw e e e e wr E am M e e e G MR s ar an e es e ms em e em e me e e ar e me o e

*Actually. hydrodynamicists consider the reduced spin rate to be a
similarity parameter also. In this context it is often referred to
as the Strouhal number.
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following simple relatiopship,

o
p - (C ) (6)
L
LY
where Cg and ¢, are the rolling-moment derivative due to fin cant
5 :

and the roll-damping derivative, resgpectively. Since each of these
derivativer depends on angle of attack and the Reynolds and Mach
nwibeirs, it seems logical that if fin cant ig fixed the reduced

spin rate, p, will depend only on angle of attack, Reynolds number
and Mach number. In other words, it Re, M and & are fixed, then the
reduced spin rate, ©, is & unique function of angle of attack, a.

It is, therefore, not appropriate to consider vaviations in reduced
epin rate indepondent of angle of attack. ‘'fhus, once a fin-cant
angle has been selected aerodynamic coefficlents, as measured in the
wind tunnel, should be apylicﬁble te any other {light regime in whi-:h
Mach nusber, Reynolds number and angle of atteck are matched. Once
the quantities M, Re, & and a are selected, the reduced spin rate is
automatically fixed tnrough Equa»zon {6). :

Now it is alsc of some interext to examine the Mach number and
Reynalds nunber effects. The effec® of Mach number on the Magnus
moment may be appreciated by ewamining Figures 38 through S1. As
the Mach number increases it is seen that the Magnus moment becomes
less negative, and then becomes increasinglyv positive. For example,
‘in Figure 39 the yaw-moment coefficient is approxicately 0.4 at an
- angle of attack of £ degrees and Hach number of X.76. 1In
Figure 40, where the Mach nuaber ig now 2.9, the yaw moment is
strongly dgpendent upon f£in caang, being about. 0.05 at 8 degrees angle
of attack and ax a fin cant of 2,9 degrees, As the Mach numbey is
increasad ¢o 2.%, the Magnus moment becoues elightly positive at
Mach 2.° and then 1ncreas:nq;v woa;t;va ag the Mach number is
increased to 3. 5. SN

A A

s oa s Lo : ek
-seiited Oy the side-force cocfficient, C ,

FEIR

X8 L=
and is presented in Figures 52 through 65. According to Equation (S),
the Magnus force should be directed alofig thc negative y axis. At
Mach numbers of 1.76 and 2.0 the side force is negative, but at the
higher Mach numbers of 2.5, 3.0 and 3.5 the sid2 force is positive.
Also, it should be noted that the Magnus force and momuent are nonzero
at cero angle of attack. If the fluid dynamic argument presented
earlier is recalled it will be remembered that there should be no
side force at zero angle of attack. The fact that a sizable force
and mament do exiet at zerop angle of attack seewmr to indicate,
strongly, that the f;ns make an meertant contrxbutlon to the total
Magnus effect. L - -

10




e — v w3 T B e TR S gt e

NOLTR 70-211

The final varieble in Equation (1) is the Reynolds number. It is
difficult to assess the influence of Reynolds number because this
parasmetayr wvas not varied independent of the Mach number. An important
effect that occurs when the Reynolds number is varied is the change
in the location of boundary-layer transition ¢n the body. Thue, it
was decided to determine the position of the transition point for
the various conditions of Mach nunber and angle of attack, 1In order
to do this, a comprehensive schlieren photographic coverage was made
of the entire test program. The negatives of these photographs were
greatl; enlarged on a film reader. Thus, it was possible to examine
the boundary layer in detail and to determine, within onz-guarter
caliber, where, on thc leeward side of the body, transition takes
place. Figure 66 is a summary of this effort. This figure shows
that the transition point on the leeward side is at about seven
calibers aft of the body vertex at zero-degree angle of attack; and,
from this point, moves forward toward the vertex as the angle of
attack increases. The uncertainties in the determination of the
transition point have clearly masked all Mach number affects. Since
the larger Reynolds numbers occur at the low Mach numbers, it would
be expected that the transition point would be closer to the vertex
for the lower Mach numbers.

Figures 67, 68 and 69 present a sample of the above mentioned
schlieren photographs taken at Mach numbers of 2.0, 3.0 and 3.5,
respectively. The photographs in these figures are much too small
to show boundary-layer details, but separation can be seen,
clearly (on Fig. 67b fHr example’.

CONCLUSION

The static measurements clearly indicate that adeguate load
predictions can be made using a planar-fin assumption. The Magnus
force and moment may be described in terms of angle of attack, Mach
number and Reynolds number. Spin rate need not be varied indepen~
dently, since it is a function of angle of attack, Mach number and
Reynolds number once a fin-cant angle is chosen. The Magnus force
is small compared to the normal force which is acting under the same
filow conditions. As an example, the normal force is about 30 times
as great as the Magnus force. In comparison to a nonfinred pro-
jectile, the Magnus force varies in a comple:.” fashion with Mach
number, Reynolds numker and angle of attack. Also, unlike a non-
finned body, the Magnus force and moment is nonzero at zero-~degree
angle of attack. -

As a result of these tests, ccrtain recommendations can be made
for future work. First, a gystematic investigation should be made to
aggertain the effect of Reynolds number variation at several fixed
values of Mach number. Secondly, trajectery studies should be made
to detemine the significance of the Magnus effect on vehicles
configurationally similar to the test vehicle. Finally, new wind-
tunnel balances should be constructed in order to improve the accuracy
with which these side loads cai be measured.
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